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Abstract

Introduction: While considered extreme events, wildfires will lengthen and strengthen in a changing
climate, becoming an omnipresent climate-sensitive exposure. However, few studies consider long-term
exposure to wildfire fine particulate matter (PM, 5). Here, we present a conceptual model to assess long-

term wildfire PM, 5 exposure and evaluate disproportionate exposures among marginalized communities.

Methods: We used 2006-2020 California census tract-level daily wildfire PM, s concentrations generated
from monitoring data and statistical techniques to derive five long-term wildfire PM, 5 measures. We
classified tracts based on their CalEnviroScreen (CES) score, a composite measure of environmental and
social vulnerability burdens, and their racial/ethnic composition. We determined associations of (a) CES
score and (b) racial/ethnic composition with the five wildfire PM, 5 measures using separate mixed-

effects models accounting for year and population density. To assess differences by year, models
included CES or race/ethnicity year interaction terms.

Results: We conceptualized and compared five annual wildfire PM, 5 exposure measures to characterize
intermittent and extreme exposure over long-term periods: (1) weeks with wildfire PM, s >5ug/m3; (2)
days with non-zero wildfire PM, 5; (3) mean wildfire PM, 5 during peak exposure week; (4) smoke-waves (
2 consecutive days with  25ug/m? wildfire PM, c); (5) annual mean wildfire PM,, = concentration.
Within individual years, we observed exposure disparities, but generally did not when averaging over the

study period. Non-Hispanic American Indian and Alaska Native populations, however, were consistently
over-represented among the exposed population compared to their California-wide representation.

Conclusion: We found that wildfire PM, 5, measured via five metrics, disproportionately affected
persistently marginalized California communities—with substantial year-to-year variability.

SIGNIFICANCE STATEMENT

Wildfires are a recurrent environmental exposure in a changing climate that produce extreme increases in
short-term fine particulate matter (PM, 5) concentrations and elevated long-term exposures in affected
areas with important environmental justice implications. We proposed a conceptual model for assessing
long-term wildfire PM, 5 exposure using five metrics. Our California environmental justice analysis
revealed exposure disparities for communities identified as disadvantaged by CalEnviroScreen, in some
years. However, every year we found that Indigenous populations were disproportionately exposed to
wildfire PM, 5. Estimating average exposure, rather than more time-limited measures that capture short-
term peaks, may obfuscate disparities and undermine opportunities to mitigate exposure burdens among
marginalized communities. Improved understanding of wildfire smoke-related exposure disparities can
inform interventions that advance health equity.

INTRODUCTION
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Wildfires—anticipated to lengthen, strengthen, and expand in a changing climate in various parts of the
globe, including California (CA) (1-6)— produce extreme short-term fine particulate matter (PM, )
concentrations and lead to elevations in long-term average exposures. For example, Sacramento, CA
logged the planet’s worst 24-hour average PM, s levels (263 pug/m?3) during the 2018 Camp Fire (7, 8).
Partially driven by wildfire smoke, the 2018 annual average PM, 5 concentration in Sacramento, CA (12.7

pg/m?3) also exceeded the United States Environmental Protection Agency’s (US EPA) annual standard of
12 ug/mé3. Moreover, while most of the United States (US) has experienced steadily declines in ambient
PM, 5 concentrations since 2000, wildfire smoke has reversed this trend in the Western US (9). Indeed,
wildfire-prone parts of the Western US have seen concentrations of wildfire PM, s increase by 5 ug/m?3
between 2006-2010 and 2016-2020 (10).

Wildfires have substantial societal impacts. Many studies report associations between elevated short-
term wildfire PM, 5 exposure and higher risk of adverse health outcomes, particularly respiratory

disease (11-15). Further, 0.5% of all-cause deaths in 749 cities worldwide appear attributable to short-term
wildfire PM, 5 exposure (15). The epidemiological literature addressing the health impacts of wildfire

smoke has focused on short-term exposures almost exclusively (16-18). Yet, given the increasing
frequency and intensity of such climate-sensitive exposures, assessing the possible health consequences
of repeated and intermittent exposures to wildfires has become a pressing issue.

The US EPA describes the relationships of long-term total PM,, 5 exposure (from all emission sources)

with cancer, respiratory outcomes, and nervous system outcomes as likely causal, and the relationship
with cardiovascular disease effects and all-cause mortality as causal (19). Virtually all epidemiologic
studies contributing to the US EPA conclusions estimated PM, 5 exposure based on average long-term

concentrations. However, average long-term PM, 5 concentrations may not capture PM, 5 spikes
generated by episodic, short-lived events, like wildfires. Over the long-term, wildfire PM, 5 concentrations

are zero-inflated with minor exposure in most months and severe concentration peaks on some days,
resulting in an annual average that is not reflective of how people experience sporadic wildfire PM, s

exposure. Such specificities require novel metrics that consider these contemporary patterns of wildfire
events.

Researchers lack an agreed-upon framework with which to measure long-term wildfire PM, = exposure,
stifling development of an evidence base for this increasingly important PM, s source. To date, studies of
long-term wildfire air pollution often ignore the unique spatiotemporal patterning of wildfire PM,

concentrations. Previous studies tend to define exposure as a binary yes/no based on whether a
participant lived near a major fire (20-23). Some studies have estimated wildfire-related air pollution
exposure for a single wildfire event or season (24-28). To our knowledge, only one study evaluated the
relationship between long-term time-varying wildfire PM, s and adverse health effects (29). In their study

on childhood exposure and mortality, Xue et al. estimated average wildfire PM, 5 concentration over
various time periods (e.g., month of health outcome, 12 prior months, in utero, etc.), and observed no
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association between average 12-month prior or life-long wildfire PM, 5 concentrations and risk of infant
or child mortality across multiple countries (29).

Although no long-term studies have characterized intermittent and variable PM, 5 trends produced by
wildfire in their exposure estimates, new models of daily wildfire PM, 5 exposure make calculating
alternative metrics possible (10, 30-32). Between 2016—2020, an annual average of 16.4 million
Americans lived in places where wildfire PM, < exceeded 50 pg/m? on at least one day (10). Traditional

exposure assessment focuses on three domains: frequency, duration, and concentration (33). Similarly,
the health effects of wildfire exposures depend on a combination of factors, including how often
(frequency), how long (duration), and at which levels (concentration) these exposures occur. Advancing
metrics that capture these distinct exposure domains is crucial as the most relevant metric will depend on
the health outcome being examined. Indeed, cumulative exposure may be most appropriate for chronic
effects like cancer, surpassed thresholds during sensitive developmental windows for birth outcomes,
and spikes of exposure for acute respiratory effects.

In addition to biologically relevant exposure assignment for health studies of long-term wildfire PM, 5

exposure, exposure metrics matter for environmental justice (EJ) considerations. The White House
Environmental Justice Advisory Council (WHEJAC) defines EJ communities as locations “with significant
representation of persons of color, low-income persons, Indigenous persons, or members of Tribal
nations, where such persons experience, or are at risk of experiencing, higher or more adverse human
health or environmental outcomes” (34). A body of literature finds disproportionate exposure to total
PM, 5 (35, 36) in EJ communities, but recent US nationwide studies of wildfire PM, 5 have found the

opposite: higher annual average wildfire PM, 5 concentrations among higher income and non-Hispanic
white populations (9, 10). Nonetheless, some older studies using threshold-based exposure metrics (e.g.,
annual wildfire PM, s > 1.5 mg/m?) identified EJ concerns (37-39). Contradictory findings may be due to
the fact that distributions of wildfire PM, s can change dramatically from year-to-year and that different
exposure metrics were used. Because EJ communities already face a higher burden of total PM, 5 and

other pollutants and are projected to be disproportionately burdened by climate exposures (40) and their
effects (41), it is critical to determine whether disproportionate exposure extends to wildfire PM, s.

The present study

Increasing trends and more ubiquitous wildfire PM, s exposures necessitate long-term exposure

assessment to better understand implications for chronic health effects and EJ. Here, we introduce a
conceptual model (Figure 1) for measuring long-term wildfire PM, 5 exposure, summarize trends in

exposure metrics, and apply these metrics in an EJ analysis in California from 2006-2020.

RESULTS
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In this EJ study, we evaluated five metrics of long-term wildfire PM, 5 exposure from 2006-2020 in 7,919
California census tracts. Across the study period, census tracts experienced a median of 13 weeks (IQR: 7,
28; maximum: 145) in which wildfire average weekly PM, s concentrations exceeded 5 pug/m?3, 245 days
(IQR: 229, 378; maximum: 1269) with detectable wildfire PM, 5 concentrations, and 3 smoke waves (IQR:
1, 8; maximum: 59). The median of the mean weekly wildfire PM, 5 (for the annual peak week) was 7.8
ug/m3 (IQR: 3.6, 20.9; maximum: 281) and the median of the mean annual wildfire PM, s concentration
was 0.3 ug/m?® (IQR: 0.2, 0.8; maximum: 21.4).

Spatiotemporal trends in five measures of wildfire PM, 5 exposure

We observed geographic, seasonal, and year-to-year variability in exposure, with generally higher
exposures in Northern California, summer and fall months, and 2008, 2018, and 2020 (Figure 2,
Supplementary Figure 1, Supplementary Figure 2). Interestingly, distinct patterns emerged by metric. For
example, annual average wildfire PM, 5 exposure was consistently higher in Northern California, while the
mean concentration during the annual peak week and number of days annually with non-zero wildfire
PM, 5 concentrations were more evenly distributed across the state (Supplementary Figure 1). When

summarized across the study period, the Spearman correlation between the five metrics ranged from 0.7
(total days with non-zero wildfire PM, 5 concentration and mean exposure during the peak week) to 1

(mean wildfire PM, 5 concentration and peak-week mean wildfire PM, 5 concentration) (Supplementary

Figure 3). Summarized annually, the Spearman correlation between metrics ranged from 0.3 (total days
with non-zero wildfire PM, s concentration and total smoke waves in 2008) to 1 (mean wildfire PM, 5

concentration and peak-week mean wildfire PM, 5 concentration in several years).
Descriptive differences in wildfire PM, 5 exposure by CES score

Higher CES scores predominated in the Central Valley, parts of Southeast California, Los Angeles,
Riverside, and the East Bay in the San Francisco Bay Area (Supplementary Figure 4). When summarized

over the whole study period, census tracts in the 41" quartile (disadvantaged communities) versus the
lower 3 quartiles of CES scores had similar or lower long-term wildfire PM, = exposure, as measured by

the five metrics (Figure 3; Supplementary Figure 5). However, important heterogeneities were observed
during specific years of the study period. For example, in 2020, disadvantaged versus not disadvantaged

communities (quartile 4 versus 1-3 of CES score) had a lower median (1.2 versus 1.9 ug/m?) and 90t
percentile (8.4 versus 8.8 pg/m?3) annual mean wildfire PM, s concentration. For the number of weeks
with average wildfire PM, s >5 pg/m? in 2020, disadvantaged versus not disadvantaged communities

had a lower median exposure (5 versus 7 weeks) but a higher 90™" percentile exposure (16 weeks versus
13 weeks). Figure 3B illustrates the spatiotemporal variability in which communities were most exposed.
For example, in 2009 compared to 2020, a greater proportion of Southern California census tracts were
disadvantaged and experienced high wildfire PM, 5 exposure (Supplementary Figures 5-6).
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Descriptive differences in wildfire PM, s exposure by racial/ethnic composition
Descriptive differences in wildfire PM, s exposure by racial/ethnic composition

The relationship between census tract racial/ethnic composition and annual wildfire PM, 5 exposure also
differed over time (Figure 4, Supplementary Figures 7-8). Figure 4, Panel A depicts the California-wide
average census tract racial/ethnic composition, with 41.6% NH white, 36.4% Hispanic, 12.5% NH Asian,
5.9% NH Black, 2.6% NH two or more races, 0.5% NH American Indian or Alaska Native, and 0.6% other
race/ethnicity residents. When averaging from 2006—-2020, the most exposed census tracts were
predominately NH white, but on a year-to-year basis different patterns emerged. For example, in 2019, the
most exposed census tracts were predominately Hispanic, and in 2018, NH American Indian and Alaska
Native residents were disproportionately represented among the most exposed census tracts.

In terms of relative risk (RR), non-Hispanic American Indian and Alaska Native populations faced
disproportionately high exposure every year (RRs ranged from 2.18 in 2011 to 3.94 in 2014), and non-
Hispanic white populations did in most years (RRs ranged from 1.15in 2016 to 1.48 in 2012)
(Supplementary Table 1A). Non-Hispanic Asian and non-Hispanic Black populations had consistent
disproportionately low exposure (RRs ranged from 0.4 to 0.7), while Hispanic populations and non-
Hispanic populations of 2+ races fluctuated between disproportionately high or low exposure, depending
on the year. When we evaluated disproportionate exposure to high (>25 pg/m? annual average) exposure,
the patterns remained somewhat consistent, but the size of the relative disparity grew for non-Hispanic
American Indian and Alaska Native populations (e.g., RR in 2014 was 37; Supplementary Table 1B) and
became more variable for other populations. For example, Hispanic individuals faced disproportionately
high exposure in 2019 (RR = 1.6) but not in 2018 (RR = 0.3) or 2020 (RR = 0.4). Conversely, NH white
people had disproportionately high exposure in 2018 and 2020 (both RR = 1.9) but not 2019 (RR = 0.8).

Association between CES score and wildfire PM, 5 exposure, overall

Using linear and negative binomial regression models, we observed that averaged across 2006—2020
disadvantaged communities (census tracts that made up the highest quartile of CES score) had lower
long-term wildfire PM,, 5 exposure across four of the five exposure measures, on average, from 2006—

2020 compared to their more advantaged counterparts (Figure 5, orange estimates; Supplementary Table
2). The magnitudes of these differences were quite small. For example, quartile 4 versus 1-3 CES score

tracts had 0.14 pg/m? lower (95% Cl: -0.17,-0.10) annual mean wildfire PM, s exposure (Figure 5E).
Association between CES score and wildfire PM, 5 concentration, by year

The direction of the association between CES score and PM, s concentration changed annually. For
annual average wildfire PM, 5 concentrations, quartile 4 versus quartile 1-3 CES scores were associated

with higher concentrations during 5 of 15 years, lower concentrations during 8 of 15 years, and no
difference during 2 of 15 years (Figure 5E, Supplementary Table 2E). The years 2018 and 2020 illustrate
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how census tracts with higher CES scores can have lower concentrations one year and higher the next.
During 2018, census tracts with higher CES scores had lower exposure as quantified by all five measures,
but during 2020, higher CES scores had higher exposure on three of five measures, for example
experiencing 6.0 (95% Cl: 4.6, 8.2) more days with non-zero wildfire PM, s concentrations (Figure 5B,

Supplementary Table 2B).

Association between racial/ethnic composition and wildfire PM, s exposure, overall

In terms of racial/ethnic disparities in long-term wildfire PM, s exposure, we saw relatively limited and
small differences in average exposure throughout the study period (2006—2020) in models that
controlled for population density (Supplementary Figure 9). A 1-SD increase (26.9% increase) in percent
non-Hispanic white population was associated with additional average exposure, for example, 0.19 (95%

Cl: 0.12, 0.25) more days each year where with >0 pg/m? wildfire PM, < and 0.71 pg/m? (95% CI: 0.41,
1.01) higher mean peak-week wildfire PM, s exposure. Results from adjusted models were similar for non-

Hispanic white populations. Conversely, census tracts composed of a higher proportion non-Hispanic
Asian and Black individuals had lower average exposure over the study period. For example, a 1-SD
increase (9.3% increase) in percent non-Hispanic Asian population was associated with 0.24 (95% CI:

-0.30,-0.17) fewer days each year where wildfire PM, - exceeded 0 pg/m?® and -0.87 ug/m? (95% Cl: -1.14,
-0.60) lower mean peak-week wildfire PM, s exposure.

Association between racial/ethnic composition and wildfire PM, s concentration, by year

Associations between racial/ethnic composition and wildfire PM, s did not remain consistent across
individual study years. For example, in 2020, a 1-SD increase in percent non-Hispanic Black residents was
associated with 1.42 (95% CI: 1.20, 1.63) more days with wildfire PM, s exposure >5 ug/m?3, while in 2019,
a 1-SD increase was associated with fewer days with wildfire PM, - exposure >5 pg/m?3 (-0.33, 95% Cl:
-0.37,-0.28) (Supplementary Figure 9). The consistent relative exposure disparities observed for American

Indian and Alaska Native populations (with the RR metric) persisted in many years of the adjusted
analyses. Associations were most consistent for peak-week mean wildfire PM, 5 and annual average

wildfire PM, 5 concentrations where in 7 of 15 years, a 1-SD increase with American Indian and Alaska

Native population was associated with higher exposure. Associations were mostly null for other exposure
measures.

DISCUSSION

In this study, we proposed distinct metrics to characterize repeated and intermittent exposure to wildfire
PM, 5 that can be adapted and modulated to study various health and EJ impacts, as wildfires, a climate-

sensitive exposure, become more omnipresent. We applied these metrics to assess the EJ implications of
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exposure to long-term exposure to wildfire PM, 5 in California by analyzing associations each year and
across five measures of wildfire PM, 5 exposure, rather than simply considering effects averaged over a
study period with a single measure of exposure. We found that wildfire PM, 5 disproportionately affected
marginalized communities—in some years. Non-Hispanic American Indian and Alaska Native populations
consistently experienced 2-3 X the annual mean wildfire PM, 5 concentration compared to the overall

California population. Non-Hispanic white populations were also disproportionately exposed in many
years, though generally not to the same extent as American Indian and Alaska Native populations. In
addition, census tracts scoring in the 4th quartile of CES score (“disadvantaged”) had distinctly higher
concentrations of wildfire PM, 5 in some years compared to other census tracts. These findings indicate
that relying on averages may underestimate disparities in wildfire exposure burdens. As we observed,
disaggregation of exposure metrics by time and space revealed disparities by community disadvantage
and race/ethnicity. These disparities are relevant for future wildfire studies seeking to characterize health
effects based on specific timeframes or for health endpoints with persistent disparities, particularly
among communities facing disproportionate cumulative burdens from other environmental hazards and
social stressors. Our results also highlight the importance of considering additional exposure metrics that
incorporate elements of frequency, duration and concentration when characterizing intermittent and long-
term wildfire-related PM, 5 exposure.

Environmental exposures tend to follow a social gradient, wherein marginalized communities face
disproportionately high exposures (42, 43). For example, long-term overall PM, 5 concentrations in the US

are higher in historically redlined communities, communities with lower income levels, and communities
of color (35, 36, 44). Zoning, disproportionate siting, residential segregation, gentrification and other
pathways contribute to these observed disparities (42). Wildfire-specific PM, s, while not randomly

distributed, is generated by wildfires with somewhat unpredictable sizes and locations, and smoke
transportation driven by various meteorological patterns, which may explain the less consistent evidence
of disproportionate exposure to wildfire PM, s among racially or socioeconomically marginalized groups.

Indeed, our results differed quite dramatically by year, with disadvantaged census tracts, as defined by
CalEnviroScreen, experiencing mean annual wildfire PM,  that were 0.36 ug/m?3 higher in some years

and 0.59 pg/m? lower in other years, compared to non-disadvantaged tracts.

Some prior wildfire PM, s EJ analyses corroborate our results. Nationwide county-level studies using
different exposure models and conducted during different time periods have reported a higher percentage
of Black residents in areas exposed to > 1.1 ug/m? annual mean wildfire PM, ¢ (2008-2012) (39), poorer
counties experiencing more smoke waves (2004-2009) (37), and more vulnerable counties having higher
annual mean wildfire PM, = exposure but fewer extremely high (> 35 pg/m?3) wildfire PM, = days (2008—

2012) (38). Two other nationwide studies from Burke et al. found that counties with a higher proportion
of non-Hispanic white residents had higher wildfire PM, 5 concentrations (2006—2018)(9) and no

correlation between wildfire PM, s and income (45). In the only other census tract-level study, Childs et al.
compared two time periods and found limited socioeconomic or racial disparities in annual mean wildfire
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PM, s exposure from 2006—2010; however, from 2016—-2020, this relationship shifted, and results
showed an association between higher percentages of Hispanic and non-Hispanic white residents and
higher per capita income with higher exposure (10).

Prior wildfire PM, 5 studies have not assessed disparities for American Indian and Alaska Native
populations or individuals of 2 +racial/ethnic groups. Our analyses revealed considerable wildfire PM, 5
exposure disparities for American Indian and Alaska Native residents, especially on the relative scale,
where each year this group was overrepresented among the exposed population relative to their statewide
representation. Our results are consistent with Masri et al., who observed that higher proportions of
American Indian and Alaska Native populations in California census tracts had the most wildfires and
burned acres from 2000-2020 (46). In the US, American Indian and Alaska Native populations tend to
live in more rural communities, which may result in higher wildfire risk and related PM, 5 exposures.
Notably, in our analysis, results for this group often persisted in models where we adjusted for population
density. Further work could improve understanding of how historical policies have resulted in the
observed disparities for American Indian and Alaska Native people. Farrell et al. found that, during the
processes of illegal land dispossession and forced migration, Indigenous peoples were forcibly moved to
areas that are now more susceptible to climate extremes, including higher temperatures and wildfire risks
(47). Furthermore, the suppression of Indigenous land management practices in California, in addition to
climate change, has resulted in increased wildfire risks (48).

Our California study builds on prior work, centering EJ questions, using newly developed daily estimates
of wildfire PM, s concentration, and evaluating EJ associations across the study period and by year. We
presented a coherent conceptual model for estimating long-term exposure to wildfire PM, &, though other
measures of exposure exist and may yield different results in terms of temporal and demographic
patterns of exposure burden. We used CES score, which consists of approximately 20 indicators, and
wildfires contribute to elevated levels of two of the environmental exposure indicators (49, 50): average
total PM, s concentrations and summer average daily maximum 8-hour ozone concentrations. This could
increase the association between exposure and outcome. Notably, our observed EJ findings could also
underestimate true exposure disparities because lower SES individuals are more likely to reside in lower-
quality housing with higher permeability to outdoor air pollution, reduced ability to purchase and maintain
air filtration systems, and constrained options to mitigate work-related exposures, particularly for outdoor
occupations in, for example agriculture and construction. We did not estimate wildfire impacts on air
quality indoors, where people spend most of their time (51). Low-cost air quality sensors (e.g., PurpleAir
sensors) could help provide part of this information, though they are differentially located in wealthier
communities (45, 52, 53). Evidence suggests that populations in wealthier counties more often Google
“air filter” and stay fully indoors at home on heavy wildfire smoke days compared to populations in lower
income counties (45). These differences, as well as other factors like pre-existing health conditions, may
explain stronger relationships observed between wildfire smoke exposure and adverse health effects
among older adults and persistently marginalized racial/ethnic groups (37, 54, 55). We did not assess
differences in associations by region of California, including air basins or metropolitan areas with
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different air quality and meteorological characteristics, though preliminary research suggests EJ-related
disparities may be more pronounced in some regions (52). Finally, while we assessed associations
across our study period and by each year, we did not consider trends over time (e.g., whether disparities
are worsening). We observed year-to-year fluctuations in associations and given expected increases in
population exposures to wildfire smoke, future research can help identify spatio-temporal trends and
communities where interventions to mitigate wildfire smoke-related exposures are most needed, for
example, due to higher rates of underlying chronic health conditions, and co-exposures to other
environmental hazards and social stressors that may enhance vulnerability to the adverse health effects
of wildfire-related PM, 5 (56).

While, to date, the vast majority of climate and health studies have focused on quantifying the short-term
impacts of climate-sensitive exposures (CSE) including wildfires, extreme heat, or floods on acute
outcomes such as emergency departments visits or premature mortality, little evidence exists regarding
the potential impact of long-term health impacts of CSE which mostly focused on mental health
outcomes (57, 58). Existing studies linking long-term exposures such as floods or droughts to mental
health have limitations related to exposure assessment (59). As CSE become omnipresent, it is essential
to better characterize and understand the long-term impacts and design robust epidemiological studies
that consider the unprecedented nature of such exposures. In this paper, we propose a framework for
quantifying various dimensions of wildfires smoke exposure that can easily be extended to other extreme
and episodic CSE, which we can no longer consider exceptional or rare. These exposure metrics can be
integrated into a time-to-event framework, that has been used extensively for traditional long-term
exposure to air pollution for example (60, 61), to analyze the long-term effects of time-varying exposure to
wildfires or other CSE on various chronic diseases such as dementia, cardiovascular diseases, or cancer
incidence.

In this study, we provided a conceptual framework for measuring long-term exposure to wildfire PM, 5, a
key contribution to public health research because wildfire-related PM, 5 continues to make up a larger
portion of total PM, 5 exposure in the Western US (9) and is becoming more common elsewhere (38, 62).

Such exposure metrics can support a new generation of epidemiology studies to evaluate unique
challenges posed by climate change on human health. Our results indicate that rather than relying on
estimates of average exposure, deriving more time-limited measures can reveal exposure disparities and
elucidate opportunities to inform public health interventions with benefits to health equity.

MATERIALS AND METHODS

Study design and conceptual model

We conducted analyses within 2010 California census tract boundaries, excluding 33 (0.4%) tracts with
no recorded population. We identified EJ communities using CalEnviroScreen (CES) 3.0 and 4.0. These
tools do not include data on census tract-level racial/ethnic composition, so we supplemented with
race/ethnicity data from the 2010 Decennial US Census (63, 64). We derived daily census tract-level
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wildfire PM, s concentrations for 2006—2020 (see details below) using satellite imagery, monitored
concentrations, and machine-learning based multiple imputation (32).

Building upon principles from exposure science to include measures of frequency, duration, and
concentration (33, 65), we developed a conceptual model of long-term wildfire PM,, 5 exposure (Figure 1).
Domains included frequency (number of exposures within a time period), duration (how long exposed),
and intensity (level of exposure). We summarized exposure metrics at the annual level, but other
researchers could use alternative time frames (e.g., month, 5-year period) depending on the research
question.

Data and metrics

Wildfire PM, 5 exposure metrics

Our team previously developed methods to estimate daily wildfire PM, 5 (32) and applied the same

methodology for census tract level concentrations.Briefly, we fit an ensemble of machine learning models
using monitored PM, s concentrations and a wide range of predictors for PM, 5, such as aerosol optical

depth, land cover and meteorological conditions, to estimate daily concentrations of PM, =. We then
isolated daily wildfire smoke PM, 5 from total PM, 5 by using different smoke products and spatio-
temporal imputation techniques. We used these daily wildfire smoke PM, s predictions to compute the
five metrics of long-term wildfire PM,, s exposure across California census tracts from 2006-2020. First,
the number of weeks each year for which mean wildfire PM, < concentrations exceeded 5 pg/m?. Second,
the number of days each year for which wildfire PM, ¢ concentrations were >0 ug/m?3. Third, the mean
daily wildfire PM, s concentration during the peak weak of exposure for each year. Fourth, the number of
smoke waves each year, and fifth, the annual mean wildfire PM, s concentration. We defined smoke
waves as the number of instances of 2 consecutive days with 25ug/m? wildfire PM, ¢, which was close
to the study area and period 90th percentile of wildfire PM, 5 concentration on days with any wildfire
PM, s, similar to prior work (66).

Environmental burden and population vulnerability

The California Office of Environmental Health Hazard Assessment originally developed CES in 2010 to
measure the cumulative impact of environmental exposures and social vulnerability factors to “support
the incorporation of equity and environmental justice goals into policymaking” (67). Our study relied on
census tract-level scores from versions 3.0 and 4.0 of CES. CES 3.0 included 20 indicators based on data
from 2006-2015 in two components: Pollution Burden (environmental exposures [n=7 metrics] and
effects [n=5 metrics]) and Population Characteristics (sensitive populations [n=3 metrics] and
socioeconomic factors [n=5 metrics]) (68) (Supplementary Methods). CES 4.0 added children’s lead risk
from housing as an additional environmental exposure and otherwise updated indicators from CES 3.0
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using data from 2009-2020 (63). We linked CES 3.0 data to 2006-2012 wildfire PM, 5 estimates and CES
4.0 data to 2013-2020 estimates. The final relative CES ranging from 0 to 100 is calculated as follows:

2. environmental ef fectSpercentite
2. €XPOSUT€Spercentite 2

nexpasu‘res indicators % 10

/nenvironme'ﬂtal effects indicators x 10

Y sensitive populatiompercmme Y. socioeconomic f actorSyercentite
X

Nsensitive populations indicators x 10 Nsocioeconomic factors indicators %X 10

The CES datasets included information on 8,035 California census tracts (99.7% of 8,057 total tracts).
Our final dataset included the 7,919 census tracts (98.3%) with non-missing CES 3.0 and 4.0 scores (we
excluded the 93 tracts missing in both datasets, the 13 missing in CES 3.0 only and the 10 missing in
CES 4.0 only) (63, 68).

The California Environmental Protection Agency (CalEPA) uses CES to allocate proceeds from the state's
cap-and-trade program; other state agencies also target funding with this tool (69). We used CES to
identify disadvantaged California communities disproportionately burdened by multiple sources of
pollution and social vulnerability (i.e., both environmentally and socially disadvantaged). California state
agencies often designate communities with the highest 25% of CES scores as disadvantaged. We
adopted this threshold in our analyses, and compared disadvantaged census tracts in the highest CES
quartile to those in quartiles 1-3. Notably, CES does not include a measure of census tract level
racial/ethnic composition. Studies have, however, shown a correlation between worse CES score and a
higher percent people of color in California census tracts (70), which might be expected given underlying
structural causes of environmental racism (43, 71).

We additionally considered census tract racial/ethnic composition related to wildfire PM, = exposure,
following prior studies (9, 10, 39). For these analyses, we used 2010 decennial census tract-level data on
race/ethnicity (64), as these estimates have smaller margins of error compared to American Community
Survey data (72). We calculated the percent of individuals in each California census tract self-identifying
in the following categories: Hispanic, non-Hispanic white, non-Hispanic Black, non-Hispanic Asian, non-
Hispanic American Indian or Alaska Native, and non-Hispanic of two or more races. For analyses, we
used continuous percentages of each racial/ethnic group within a census tract.

Statistical analysis

We first computed Spearman correlations between the five measures of long-term wildfire PM, s exposure
overall and for each year and generated univariate maps of the wildfire PM, ¢ concentrations, CES scores,

and racial/ethnic composition of census tracts. Second, we constructed summary maps to highlight
census tracts with (1) high CES scores, (2) high proportions of people of color, and (3) high long-term
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wildfire PM, s exposures. Third, we visualized changes in measures of long-term wildfire exposure by the

sociodemographic variables of interest over time. Fourth, we estimated summary statistics of exposure to
high annual average wildfire PM, ¢ concentrations by racial/ethnic group for each year in the study

period. We estimated exposure risk ratios to evaluate whether specific racial/ethnic groups had
disproportionately high exposure to wildfire PM, s using the following equation:

mn
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where wj is either (a) the annual average wildfire PM, 5 in census tract / during year y or (b) an indicator

of wildfire PM, s in census tract j exceeding 25 pg/m? during year y; pj;is the population of racial/ethnic
group jin census tract j tis the total population in census tract /; and nis the total number of census
tracts. A risk ratio greater than 1 indicates that racial/ethnic group j was over-represented among the
exposed population, compared to their statewide representation, during year y. Arisk ratio less than 1
indicates that racial/ethnic group j was under-represented among the exposed population, compared to
their statewide representation, during year y.

We estimated the associations between the binary CES score (with 0 representing quartiles 1-3, and 1
representing quartile 4 [disadvantaged community]) as the explanatory variable and the five measures of
long-term wildfire PM,, 5 as the dependent variable over the study period. We fit linear mixed models for

the continuous metrics mean peak-week and annual wildfire PM, 5 and negative binomial models for the

discrete metrics number of weeks with mean wildfire PM, < >5 ug/m?3, number of non-zero wildfire PM, 5
days, and number smoke waves. We conducted a similar analysis replacing the CES score with each
binary racial/ethnic composition variable (e.g., 1 = quartile 4 [high percentage of non-Hispanic Black
individuals]; 0 = quartiles 1-3). Models included a categorical variable for year to account for time trends,
census tract level population density in 2010 (natural spline with 8 degrees of freedom), and for each
census tract centroid’s latitude/longitude (natural spline with 20 degrees of freedom) to account for
spatial dependence of observations (Supplemental Figure 10). We ran comparable models for
racial/ethnic composition using six separate models with a term for each racial or ethnic group as the
explanatory variable.

Finally, to test for changes in the association between CES score or racial/ethnic composition and the five
measures of long-term wildfire PM, s from 2006-2020, we added an interaction term between the
categorical year variable and the binary CES score variable or the racial/ethnic composition variable.
Analyses were conducted using R Statistical Software, version 4.1.2 (73). Code to run analyses is
available at: https://github.com/joanacasey/longterm-wildfire-pm.git.
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Conceptual model for how to assess long-term exposure to wildfire PM, 5. Our metrics capture aspects of
three domains: frequency, duration, and intensity. Other researchers can vary certain parameters, for
example, i could equal 1, 2, 3 etc. years; j, could equal 3, 5, 10, 25, etc. ug/m3; k could equal 0, 1, 3, 5, etc.
Hg/md.

3 We defined smoke waves as the number of instances of =2 consecutive days with = 25ug/m? wildfire
PM, s, which was close to the study area and period 90" percentile of wildfire PM, < concentration on
days with any wildfire PM, s, similar to prior work by Liu et al. (2017).
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Figure 2

Five measures of census tract-level® wildfire PM, 5 concentration summarized from 2006-2020. (A)

Number of weeks with average wildfire PM, s > 5 pg/m?3; (B) Number of days with non-zero wildfire PM, <
concentrations; (C) Average of mean daily wildfire PM, 5 concentration during the peak week; (D) Number

of smoke waves®; (E) Average of mean annual wildfire PM, - concentration.

4 Maps include 7919 census tracts; grey census tracts indicate missing sociodemographic data; these
tracts were not included in analyses.

b \We defined smoke waves as the number of instances of 2 consecutive days with 25pg/m?3 wildfire
PM, s, which was close to the study area and period 90" percentile of wildfire PM, < concentration on
days with any wildfire PM, 5, similar to prior work by Liu et al. (2017).
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Figure 3

Annual mean wildfire PM, s concentration by CalEnviroScreen score in California from 2006—2020. (A)
Temporal distribution of mean wildfire PM, 5 concentration by CES quartile?; (B) Bivariate spatial
distribution of mean wildfire PM, 5 concentration and CES quartile? in 2009 and 2020. Higher CES scores
indicate greater cumulative environmental and socioeconomic disadvantage.

4 CalEnvironScreen (CES) score data available from the California Office of Environmental Health Hazard
Assessment: https://oehha.ca.gov/calenviroscreen was used to compute CES quartiles where quartile 4
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indicates a disadvantaged community.
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Figure 4

Average census tract racial/ethnic composition by annual average wildfire PM, 5 concentration in

California. (A) Overall California racial/ethnic composition using 2010 census data; (B) Racial/ethnic
composition by annual average wildfire PM, s concentration on average from 2006-2020, in 2018, 2019,
and 2020.
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Figure 5

Mean difference in long-term wildfire PM, 5 concentration in CES score quartile 4 (disadvantaged
communities) versus quartiles 1-3 averaged across 2006-2020 (orange) and during each year (black).
(A) Number of weeks with average wildfire PM, s > 5 pg/m?3; (B) Number of days with non-zero wildfire
PM, 5 concentrations; (C) Average of mean daily wildfire PM, 5 exposure during the peak week; (D)

Page 22/23



Number of smoke waves?; (E) Average of mean annual wildfire PM, s concentration. Points represent the
average marginal estimate of difference in long-term wildfire PM, 5 exposure between census tracts in

quartile 4 versus quartiles 1-3 of CES score with lines (95% Cl). The black horizontal dotted line at zero
represents no difference in long-term wildfire PM, s exposure between high and low CES score census

tracts. The orange horizontal dashed line represents the 2006—2020 mean difference in long-term wildfire
PM, s exposure measure. Models were controlled for census tract level population density in 2010

(natural spline with 8 degrees of freedom) and census tract centroid latitude/longitude (natural spline
with 20 degrees of freedom).

3 We defined smoke waves as the number of instances of 2 consecutive days with 25pg/m? wildfire
PM, s, which was close to the study area and period 90'" percentile of wildfire PM, < concentration on
days with any wildfire PM, 5, similar to prior work by Liu et al. (2017).

CES score, CalEnviroScreen score
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